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Automata performing common transitions 
We can “glue the automata together” at transitions. 
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Two automata coupled by a common transition 
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Automata coupled by counters 
We may connect automata via counting up and down “shared counters.” 
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Producer and consumer 
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Advantages 
Transition-coupled finite automata 
are a short and intuitive way 
to represent larger finite automata in a compact manner. 
 
Finite automata coupled via counters 
are a short and intuitive way 
to represent larger finite or infinite automata in a compact manner. 
 
 

     common generalization     
 Petri Nets 
(Place-Transition Systems) 
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Net graphs 
A net or net graph  
is a triple N   = (P,T,F)   such that 

P ∩ T  = ∅    and 
       F  ⊆ (P × T) ∪ (T × P). 
 

Elements of P:   places, 
represented by circles; 

 
elements of T:   transitions, 
  repr’ed by bars or rectangles; 
 
elements of F:    arcs, 
  represented by arrows. 
 

nodes

tp4 p2 

p1

p3

net  ( {p1, p2, p3, p4}, 
 { t }, 
 {(p1;t), (p2,t), (t,p2), (t,p3)} ) 
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Notions in net graphs 
      
Pre-set of node (place or transition) x: 
 }),({:• Fxyyx ∈= , 

the set of all input nodes 
(transitions, places, respectively). 

   
Post-set of node (place or transition) x: 
 }),({:• Fyxyx ∈= , 

the set of all output nodes 
(transitions, places, respectively). 

   
A loop of N is a subset {(s,t,),(t,s)} ⊆ F. 

t

•t 

t• 

•t∩t• 
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PT systems 
A 5-tuple S = (P,T,F,W,M0) is called a place-transition system or PT 
system, if 

(P,T,F) is a net, 
W : F → NI   (arc weights), and 
M0: P →  0NI  (initial marking, consisting of “tokens on places”). 

 

t
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default: 1 

dots 
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Markings, Activation, Firing 
 
Marking : M: P →  0NI     
  
t is activated or enabled under M, written as M[t〉 : 
   ∀p∈•t: M(p) ≥ W(p,t). 
 
If M[t〉 , then t can occur (or fire), 
changing M into the follower marking Mt,  
written as MttM [  : 
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Transition occurrence – an Example 
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The long range dynamics of PT systems 
Let S = (P,T,F,W,M0) be a PT system. We call a marking M reachable from 
M0 by a transition sequence *1 Tttw n ∈…=  and write MwM [0  if 

either 0MMw =∧= ε  

or   MtMMttMM  nn [[:marking 110 ′∧′′∃ −K . 

In this case, w is called a firing (or occurrence) sequence, 
we call w activated under M0 and write 〉wM [0 . 

The marking M reached after w is denoted by wM0 . 

Occ(S) := }[*{ 0 〉∈ wMTw :   the set of all firing sequences. 

Reach(S):={ )(0 SOccwwM ∈ }:  the reachability set of S. 
 

If v and w are firing sequences and permutations of each other, then 
.00 vMwM =    
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Net Dynamics – Example 
 
 
 
 
 
 
 
 
 
 
 
 

PT-System Sys 

2

t1 t2 

t3 

s2 s3

s1 

Analysis  Occ(Sys) M0 M1 M2 M3 M4 t2 t2 t3

t1

t2

t1

Analysis  Reach(Sys)

 s1 s2 s3 Occurrences 
M0 2 0 0 t2 M1  
M1 1 0 1 t2 M2  
M2 0 0 2 t3 M3  
M3 1 1 0 t1 M0, t2 M4  
M4 0 1 1 t1 M1 
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Alternative definitions of PT systems 
Expressing F by W 
PT system given by 4-tuple S = (P,T,W,M0), i.e. without the explicit set F of 
arcs: 

W : (P × T) ∪ (T × P) → IN0, and arcs with W(x,y) = 0 are simply not 
drawn! 

 

Now, the transition firing effect is elegantly expressed by a single case: 
),(),()( ptWtpWpM +− . 

1 01

1 1

1 1

1 1

0

0 0
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
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Net languages 
(Transition) labelled PT system (S,h): 

• PT systemS = (P,T,F,W,M0) 
• labelling }{: ε∪→ ATh  

(S,h) defines a label language: “write down the labels of firing transitions” 
 
L(S,h):=         , where         . 
 
Label languages are prefix-closed. 
h = identity  Occ(S). 
 
Exercise: 
Find a labelled PT system with the label language }0{ nmba mn ≤≤ . 
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A labelled net: I go to the cinema 

Have_seen_ 
movie 

go_to- 
movie 

go_to- 
movie 

Money Free_ticket 

5 5 

cannot be 
distinguished 
by people 
seeing me 
sitting in the 
cinema 

cannot be 
observed, 
as I go in 
disguise/ 
incognito. 
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Analysis of Place-Transition Nets (1) 
All nets considered in this chapter are finite. 
  
1. Determine Reach(S). 
Reach(S) finite ⇒ BFRA algorithm produces a tabular listing. 
 
Reach(S) 
infinite 

 
⇒ 

 
? Example of a simple case:  

  
 

M ∈ Reach(S) ⇒ BFRA algorithm produces M — sooner or later! 
 
 
2. Find out whether Reach(S) is finite or not. 
BFRA is only a semi-decision-procedure; it works only if YES. 
However, the coverability analysis (CA) algorithm will always tell us. 
 

t p
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Analysis of Place-Transition Nets (2) 
   
3. For a given marking M, find out if M ∈ Reach(S) 
This is the reachability problem.  
In the infinite case BFRA is only a semi-decision-procedure. 
A decision algorithm was found, but it is very complex. 
   
4. Determine Occ(S). 
Reach(S) finite ⇒  RG(S) is a finite acceptor for Occ(S). 
 
Reach(S) 
infinite 

 
⇒  

 
? Example of a simple case:  

  
  

Partial information about Occ(S) from CA: 0}w)(t,#:Occ(S)wT{t =∈∀∈ , the 
set of dead transitions.  

t p
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Analysis of Place-Transition Nets (3) 
   
5. The computation of P-invariants 
… is a part of the “linear analysis” of PT systems 
It yields properties of all reachable markings, even in the case of infinite 
Reach(S). 
Moreover it does so for arbitrary initial markings, 
and thus for infinitely many PT systems at the same time. 
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Reachability analysis and boundedness 
S is called bounded if  bpMPpSReachMNIb ≤∈∈∀∈∃ )(:),(:  . 

 A PT system S  is bounded if and only if Reach(S) is finite.  
 
The reachability graph RG(S) of S is the rooted (usually neither minimal         
        nor complete) acceptor for Occ(S) with 

• alphabet T,       •   initial state M0, and 
• state set Reach(S),     •   terminal state set Reach(S). 
• transition function δ(M,t) := Mt (if M[t〉 ),  

It can computed in tabular form by breadth-first reachability analysis (BRFA). 
 

 A PT system S  is bounded if and only if BFRA terminates.  
 Every reachable marking (state) and transition occurrence (state transition) in the 
 reachability graph is eventually produced by BFRA, if performed long enough. 
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We already saw this BFRA example 
 
 
   
 
 
 
 
 
 
 
 
 
 

2

t1 t2 

t3 

s2 s3

s1 

Analysis   
RG(Sys), Occ(Sys) 

M0 M1 M2 M3 M4 t2 t2 t3

t1

t2

t1

 s1 s2 s3 Occurrences 
M0 2 0 0 t2 M1  
M1 1 0 1 t2 M2  
M2 0 0 2 t3 M3  
M3 1 1 0 t1 M0, t2 M4  
M4 0 1 1 t1 M1 

PT-System Sys Analysis  Reach(Sys)
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Coverability analysis  
A quasi-marking is a “marking that may 
take the value infinity”, i.e. a mapping 

}{: 0 ∞∪→ NIPQ . 
The coverability tree CovTr(S) is the 
labelled tree defined by the coverability 
analysis algorithm CA. 
We represent a labelled tree by the set of 
its ordered pairs 
 (node (=state), word accepted on the path). 
The coverability tree CovTr(S) is the 
labelled tree defined by the coverability 
analysis algorithm CA. 

 

 

 
• similar to RA, but a tree 
• stop at repetitions 
• raise quasi-marking to ∞  if ≥  a previous one, wherever strictly grown 
• calculate with ∞  “as usual” 

s1t1 t2

t3s2 s3

t3

t2

(1,0,0

(0,0,0) (0,1,0

(1,0,1)
(1,0,∞)

(0,0, ∞) (0,1, ∞)

t1 t2 

t1

t3

(1,0,∞)

Example 
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Coverability analysis, properties 
 

  
CA always terminates. CovTr(S) is always finite. 
 
S is bounded if and only if 
CA never produces the quasi-marking value ∞. 
 
A transition t is dead in S if and only if 
it does not label any arc of the coverability tree. 
 

 
Even more facts can be obtained from CovTr(S), cf. literature. 
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Linear analysis: Matrix representation of a net 
 
We assume that S = (P,T,F,W,M0) is a PT system and 
that in the PT net N = (P,T,F,W,) 

},,,{ 21 mpppP …=  and },,,{ 21 ntttT …= . 
 
The nm ×  incidence matrix C = Inc(N) of S is defined by 
  

),(),(::1,1 jiijij tpWptWCnjmi −=≤≤≤≤∀ . 
   
 (Consider W as defined on (P × T) ∪ (T × P), letting W(x,y):=0 for (x,y)∉F.) 
 
If the PT net N is loop-free, then it is uniquely determined by Inc(N). 
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Linear analysis: Basic equation 
 
As ijC   tells how the token number on place pi  will change       
if transition jt  occurs, 

jC• , the j-th column of C,            
shows the change of the entire marking if transition t j  occurs: 

Mt j = M +C• j . 
  
Now we associate with every transition sequence w the number of the 
occurrences of each transition in w and list these numbers in the       
Parikh vector w  of w: 
  
















=

w),(t#

w),(t#
w

2

1

: M  

 

Basic equation of linear analysis 
If w is an occurrence sequence of S 
and C=Inc(N), then 

wCMwM += 00 . 
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Linear analysis, P-invariants 
 
P-invariant: an mIntx ∈  with 0T =xC  
 
 
 
 
 
 
Why?  “⇒ ” is simple:  

Constance of markings weighted with P-invariant 
An m-tuple mIntx ∈  is a P-invariant of a PT net N 
if and only if 
for all possible initial markings M: 

.:),( xMxMMNReachM ⋅=⋅′∈′∀  

xM
xCwxM

xwCxM

xwCM

xMxM

⋅=
+⋅=

+=

+=

′=⋅′

)(

)(

)(

TT

TT

T

T
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Linear analysis, example 
 

p 
1 

t2
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This PT system has the following incidence matrix: 


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
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−
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p
p
p
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The system of linear equations 
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, yields e.g. 

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as one P- invariant, hence (no surprise): 
1)()()()(:)( 201021 =+=+∈∀ pMpMpMpMSReachM u . 
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A nice application of linear analysis: 
readers-writers problem 

• n processes may access a file for reading or writing.  
• They want to coordinate their accesses such that 
o several processes may read at the same time; 
o while one process writes, no-one else may have access.  

   Problem as PT-system shown in black 
(parameterized scheme, for any n) 
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Problem net 
 

not interested 
in file 

p5 

t4 

t5 

p4 

t6 

p3

t1

t2

p2

t3

p1 

waiting for 
reading 

waiting for 
writing

reading writing

n 
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A readers-writers problem & solution 
• n processes may access a file for reading or writing.  
• They want to coordinate their accesses such that 
o several processes may read at the same time; 
o while one process writes, no-one else may have access.  

   Problem as PT-system shown in black 
(parameterized scheme, for any n) 

 
Solution idea: n-keys algorithm 
 
 A keyboard holds n keys. 

 A reader takes 1 key before reading and 
 returns it afterwards. 

 A writer needs n  keys. 
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Solution net 
 

key- 
board 

not interested
in file 
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Correctness: Linear analysis plus … 
Incidence matrix: Two P-invariants: 
 
 -1 0 1 -1 0 1  
 1 -1 0 0 0 0  
 0 1 -1 0 0 0  
 0 0 0 1 -1 0  
 0 0 0 0 1 -1  
 0 1 -1 0 -n n    
 

First: 
No transition changes the total number of processes. 
 
Second: 
#(readers) + n•#(writers) + #(free keys) = n  
 

The second P-invariant implies correctness! (why?) 

 1 0  0 0
 1 0  0 0
 1 0  1 0
 1 0  0 0
 1 0  n 0
 0 0  1 0
 

C  = CT = CT= 
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Petri-Nets for concurrency 
It is hard to really observe concurrency. 

It is possible to observe effects of causality 
(often  non-simultaneity). 

It is possible to obtain local timed observation sequences 
(often  potential simultaneity) 

Relativity  There is no absolute simultaneity of time-point events! 
 
 
 
Therefore: I prefer to consider events as concurrent which  

• are not mutually exclusive (e.g. because they use a resource – place, 
tool, permission – that exists only once) and 

• can be observed to happen in any order, arbitrarily closely together. 

not at the 
same time! 

Tricky concurrency 
semantics? 

Applications?? 
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Concurrency in the reachability graph … 
• does not produce new system states (markings); 
• produces new arcs  

which are diagonals of 
n-dimensional cubes (n=2, 3, 4, …) 
in the reachability graph: 

t1 

p1 

t2

p2

t3

p3

t1

t1

t1

t1

t2

t2

t2

t2 t3

t3t3 
t3

(1,1,1) 

(0,0,0) 
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 Petri Nets World website 
http://www.informatik.uni-hamburg.de/TGI/PetriNets/ 


