PhD Summer School Formal Methods for System Analysis in Informatics Druskininkai, LT, May 2007

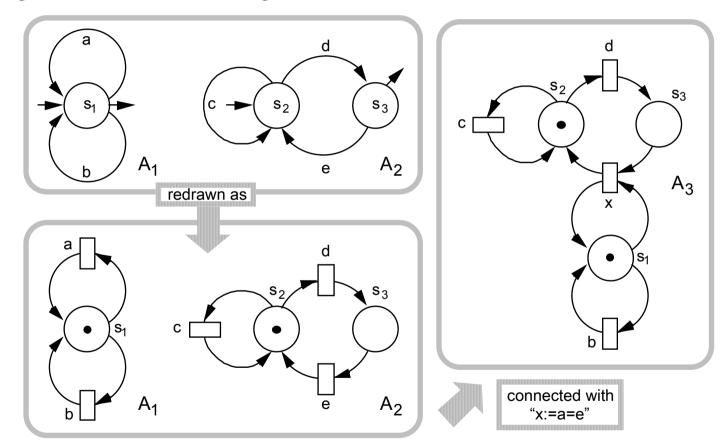
Petri Net basics

Bernd Baumgarten

Fraunhofer SIT
Rheinstr. 75, 64295 Darmstadt, Germany
bernd.baumgarten@sit.fraunhofer.de
http://private.sit.fhg.de/~baumgart/
+49 6151 869263

Automata performing common transitions

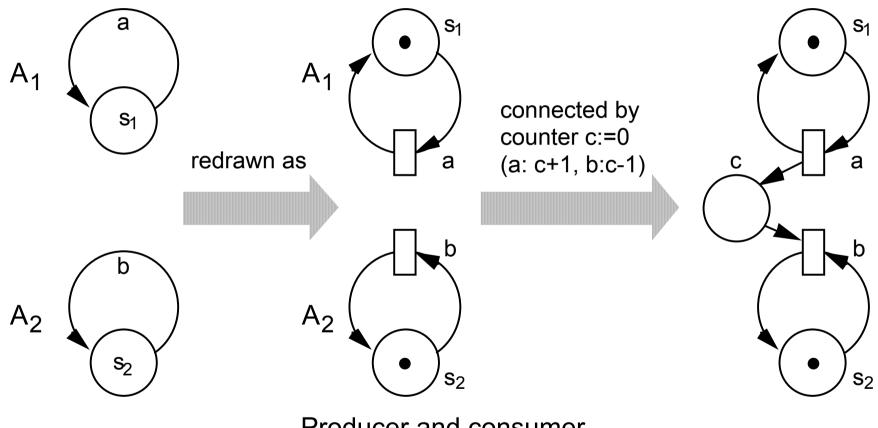
We can "glue the automata together" at transitions.



Two automata coupled by a common transition

Automata coupled by counters

We may connect automata via counting up and down "shared counters."



Producer and consumer

Advantages

Transition-coupled finite automata are a short and intuitive way to represent larger *finite* automata in a compact manner.

Finite automata coupled via counters are a short and intuitive way to represent larger *finite or infinite* automata in a compact manner.

common generalization Petri Nets
(Place-Transition Systems)

Net graphs

A net or net graph

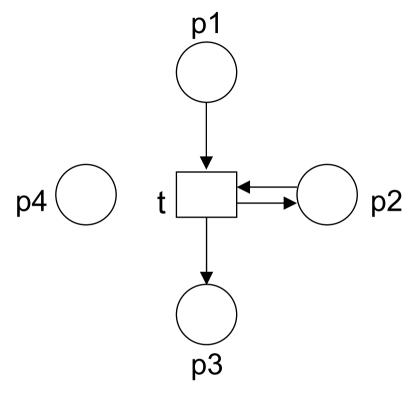
is a triple
$$N = (P, T, F)$$
 such that $P \cap T = \emptyset$ and $F \subseteq (P \times T) \cup (T \times P)$.

Elements of *P*: **places**, represented by circles;

elements of *T*: **transitions**, repr'ed by bars or rectangles;

elements of *F*: **arcs**, represented by arrows.

nodes



Notions in net graphs

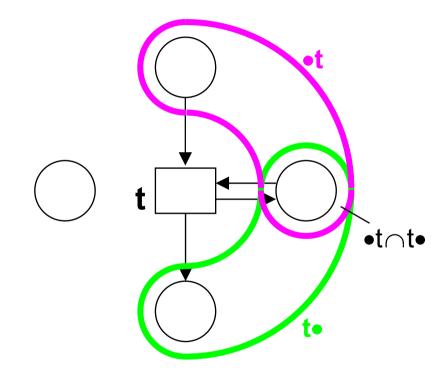
Pre-set of node (place or transition) *x*:

•
$$X:=\{y|(y,x)\in F\}$$

the set of all **input nodes** (transitions, places, respectively).

Post-set of node (place or transition) x: $x \cdot := \{y | (x,y) \in F\}$, the set of all **output nodes** (transitions, places, respectively).

A **loop** of *N* is a subset $\{(s,t,),(t,s)\}\subseteq F$.



PT systems

A 5-tuple $S = (P, T, F, W, M_0)$ is called a **place-transition system** or **PT system**, if

default: 1 (P,T,F) is a net, $W: F \rightarrow IN$ (arc weights), and $M_0: P \to IN_0$ (initial marking, consisting of "tokens on places"). dots

Markings, Activation, Firing

Marking: $M: P \rightarrow \mathbb{N}_0$

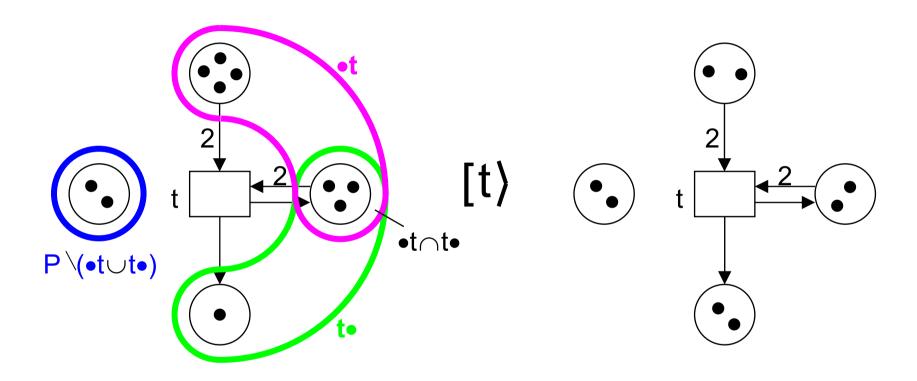
t is **activated** or **enabled** under M, written as M[t):

$$\forall p \in \bullet t : M(p) \geq W(p,t).$$

If $M[t\rangle$, then t can **occur** (or **fire**), changing M into the **follower marking** Mt, written as $M[t\rangle Mt$:

$$Mt(p) := \begin{cases} M(p) - W(p,t) & \text{if } p \in \bullet t \setminus t \bullet \\ M(p) + W(t,p) & \text{if } p \in t \bullet \bullet t \end{cases}$$
$$M(p) - W(p,t) + W(t,p) & \text{if } p \in \bullet t \cap t \bullet t \bullet t$$
$$M(p) & \text{else.}$$

Transition occurrence – an Example



The long range dynamics of PT systems

Let $S = (P, T, F, W, M_0)$ be a PT system. We call a marking M reachable from M_0 by a transition sequence $w = t_1 \dots t_n \in T$ * and write $M_0[w]M$ if

either
$$W = \varepsilon \wedge M = M_0$$

or
$$\exists \operatorname{marking} M' : M_0[t_1...t_{n-1}]M' \wedge M'[t_n]M$$
.

In this case, w is called a **firing** (or **occurrence**) **sequence**, we call w **activated** under M_0 and write $M_0[w)$.

The marking M reached after w is denoted by M_0w .

$$Occ(S) := \{ w \in T^* | M_0[w] \}$$
: the set of all firing sequences.

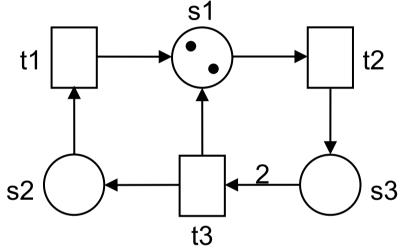
Reach(S):={
$$M_0w|w \in Occ(S)$$
}: the **reachability set** of S.

If v and w are firing sequences and permutations of each other, then $M_0 w = M_0 v$.

Net Dynamics – Example

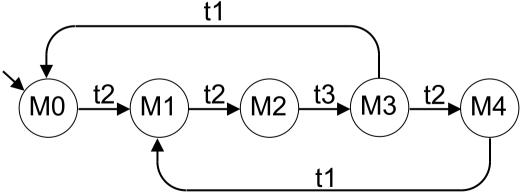
PT-System Sys

Analysis → Reach(Sys)



	s1	s2	s3	Occurrences
MO	2	0	0	t2→M1 ✓
M1	1	0	1	t2→M2 ✓
M2	0	0	2	t3→M3 ✓
M3	1	1	0	t1→M0, t2→M4 ✓
M4	0	1	1	t1→M1 ✓

Analysis → Occ(Sys)

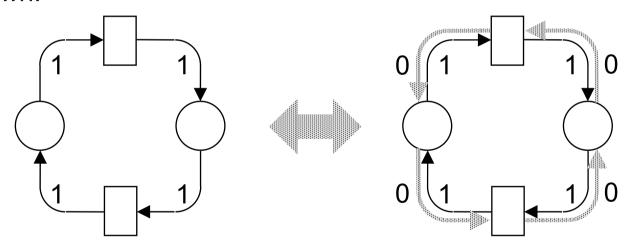


Alternative definitions of PT systems

Expressing *F* by *W*

PT system given by 4-tuple $S = (P, T, W, M_0)$, i.e. without the explicit set F of arcs:

 $W: (P \times T) \cup (T \times P) \rightarrow IN_0$, and arcs with W(x,y) = 0 are simply not drawn!



Now, the **transition firing** effect is **elegantly** expressed by a **single case**:

$$M(p) - W(p,t) + W(t,p)$$
.

Net languages

(**Transition**) **labelled** PT system (S,h):

- PT system $S = (P, T, F, W, M_0)$
- labelling $h: T \to A \cup \{\varepsilon\}$

(S,h) defines a **label language**: "write down the labels of firing transitions"

$$L(S,h):=H(Occ(S))$$
, where $H:$

$$\begin{cases} Occ(S) \rightarrow A^* \\ \varepsilon \mapsto \varepsilon \\ wt \mapsto H(w)h(t) \end{cases}$$

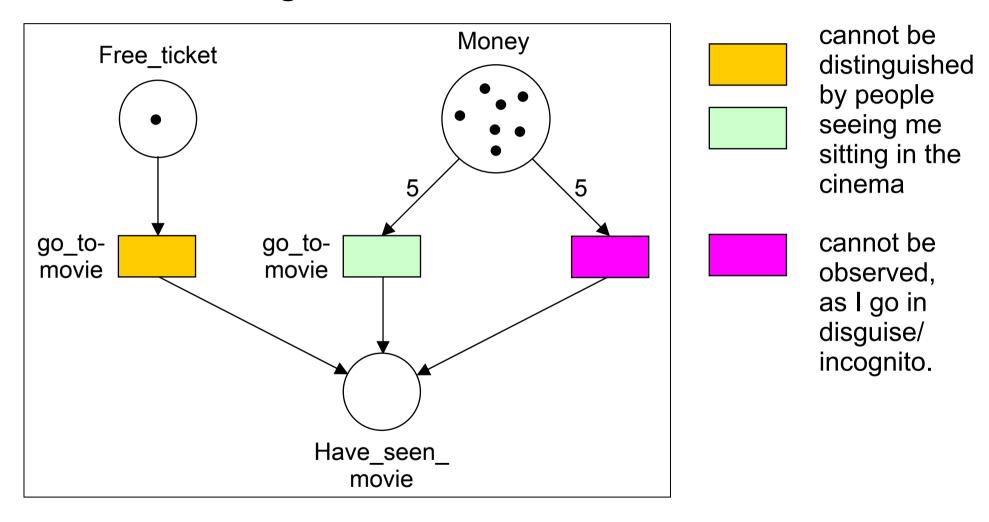
Label languages are prefix-closed.

 $h = identity \rightarrow Occ(S)$.

Exercise:

Find a labelled PT system with the label language $\{a^n b^m | 0 \le m \le n\}$.

A labelled net: I go to the cinema



Bernd Baumgarten Page 14

Analysis of Place-Transition Nets (1)

All nets considered in this chapter are finite.

1. Determine Reach(S).

Reach(S) finite \Rightarrow BFRA algorithm produces a tabular listing.

 $Reach(S) \Rightarrow ?$ Example of a simple case: infinite

 $M \in Reach(S) \implies BFRA$ algorithm produces M — sooner or later!

2. Find out whether Reach(S) is finite or not.

BFRA is only a semi-decision-procedure; it works only if YES. However, the coverability analysis (CA) algorithm will <u>always</u> tell us.

Analysis of Place-Transition Nets (2)

3. For a given marking M, find out if $M \in Reach(S)$

This is the **reachability problem**.

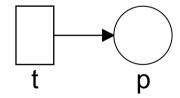
In the infinite case BFRA is only a semi-decision-procedure.

A decision algorithm was found, but it is very complex.

4. Determine Occ(S).

Reach(S) finite \Rightarrow RG(S) is a finite acceptor for Occ(S).

 $Reach(S) \Rightarrow ?$ Example of a simple case: infinite



Partial information about Occ(S) from CA: $\{t \in T | \forall w \in Occ(S) : \#(t, w) = 0\}$, the set of **dead transitions**.

Analysis of Place-Transition Nets (3)

5. The computation of P-invariants

... is a part of the "linear analysis" of PT systems

It yields properties of all reachable markings, even in the case of infinite Reach(S).

Moreover it does so for arbitrary initial markings, and thus for <u>infinitely many PT systems</u> at the same time.

Reachability analysis and boundedness

S is called **bounded** if $\exists b \in IN : \forall M \in Reach(S), p \in P : M(p) \leq b$.

A PT system S is **bounded** if and only if Reach(S) is **finite**.

The **reachability graph** RG(S) of S is the rooted (usually neither minimal nor complete) acceptor for Occ(S) with

• alphabet *T*,

• initial state M_0 , and

• state set *Reach(S)*,

- terminal state set Reach(S).
- transition function $\delta(M,t) := Mt$ (if M[t]),

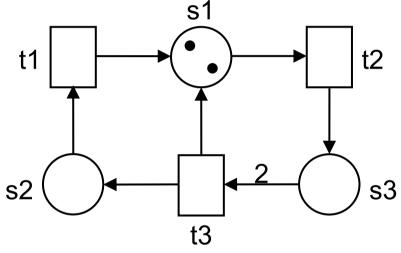
It can computed in tabular form by breadth-first reachability analysis (BRFA).

A PT system S is bounded if and only if **BFRA terminates**.

Every reachable marking (state) and transition occurrence (state transition) in the reachability graph is eventually produced by BFRA, if performed long enough.

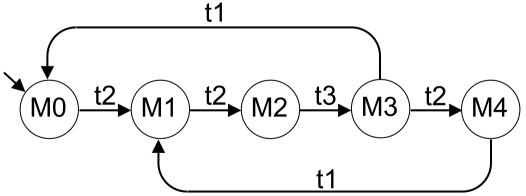
We already saw this BFRA example

Analysis → Reach(Sys)



	s1	s2	s3	Occurrences
MO	2	0	0	t2→M1 ✓
M1	1	0	1	t2→M2 ✓
M2	0	0	2	t3→M3 ✓
M3	1	1	0	t1→M0, t2→M4 ✓
M4	0	1	1	t1→M1 ✓

Analysis → RG(Sys), Occ(Sys)



Coverability analysis

A **quasi-marking** is a "marking that may take the value infinity", i.e. a mapping $Q:P \to IN_0 \cup \{\infty\}$.

The **coverability tree** CovTr(S) is the labelled tree defined by the **coverability analysis** algorithm CA.

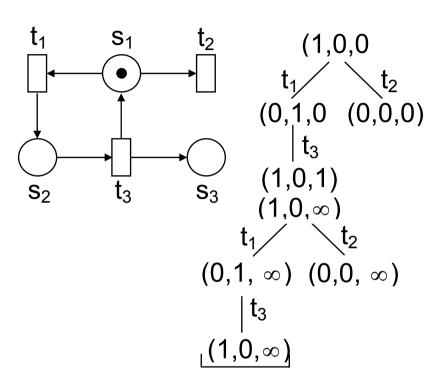
We represent a labelled tree by the set of its ordered pairs

(node (=state), word accepted on the path).

The **coverability tree** CovTr(S) is the labelled tree defined by the **coverability analysis** algorithm CA.

- similar to RA, but a tree
- stop at repetitions
- raise quasi-marking to ∞ if \ge a previous one, wherever strictly grown
- calculate with ∞ "as usual"

Example



Coverability analysis, properties

CA always **terminates**. *CovTr*(*S*) is always **finite**.

S is **bounded** if and only if

CA never produces the quasi-marking value ∞.

A transition *t* is **dead** in S if and only if it does not label any arc of the coverability tree.

Even more facts can be obtained from CovTr(S), cf. literature.

Linear analysis: Matrix representation of a net

We assume that $S = (P, T, F, W, M_0)$ is a PT system and that in the PT net $N = (P, T, F, W, M_0)$ is a PT system and $P = \{p_1, p_2, ..., p_m\}$ and $P = \{t_1, t_2, ..., t_n\}$.

The $m \times n$ incidence matrix C = Inc(N) of S is defined by

$$\forall 1 \le i \le m, 1 \le j \le n : C_{ij} := W(t_j, p_i) - W(p_i, t_j).$$

(Consider W as defined on $(P \times T) \cup (T \times P)$, letting W(x,y):=0 for $(x,y) \notin F$.)

If the PT net N is **loop-free**, then it is **uniquely determined** by Inc(N).

Linear analysis: Basic equation

As C_{ij} tells how the token number on place p_i will change if transition t_j occurs,

 $C_{\bullet j}$, the *j*-th column of C, shows the change of the entire marking if transition t_j occurs:

$$Mt_j = M + C_{\bullet j}$$
.

Now we associate with every transition sequence w the number of the occurrences of each transition in w and list these numbers in the **Parikh vector** \overline{w} of w:

$$\overline{W} := \begin{pmatrix} \#(t_1, w) \\ \vdots \\ \#(t_2, w) \end{pmatrix}$$

Basic equation of linear analysis

If w is an occurrence sequence of S and C=Inc(N), then

$$M_0w=M_0+C\overline{w}.$$

Linear analysis, P-invariants

P-invariant: an $x \in Int^m$ with $C^T x = 0$

Constance of markings weighted with P-invariant

An m-tuple $x \in Int^m$ is a P-invariant of a PT net N if and only if

for all possible initial markings *M*:

$$\forall M' \in Reach(N,M)$$
: $M' \cdot x = M \cdot x$.

Why? "
$$\Rightarrow$$
" is simple: $M' \cdot x = M'^{\mathsf{T}} x$

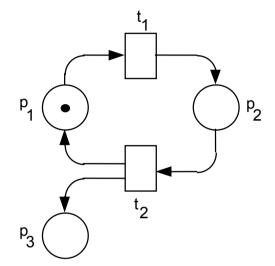
$$= (M + C\overline{W})^{\mathsf{T}} x$$

$$= M^{\mathsf{T}} x + (C\overline{W})^{\mathsf{T}} x$$

$$= M \cdot x + \overline{W}^{\mathsf{T}} (C^{\mathsf{T}} x)$$

$$= M \cdot x$$

Linear analysis, example



This PT system has the following incidence matrix:

$$\begin{array}{ccc} & t_1 & t_2 \\ p_1 & -1 & 1 \\ p_2 & 1 & -1 \\ p_3 & 0 & 1 \end{array}$$

The system of linear equations

$$\begin{pmatrix} -1 & 1 \\ 1 & -1 \\ 0 & 1 \end{pmatrix}^{T} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \text{ i.e. } x_1 - x_2 + x_3 = 0, \text{ yields e.g. } \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

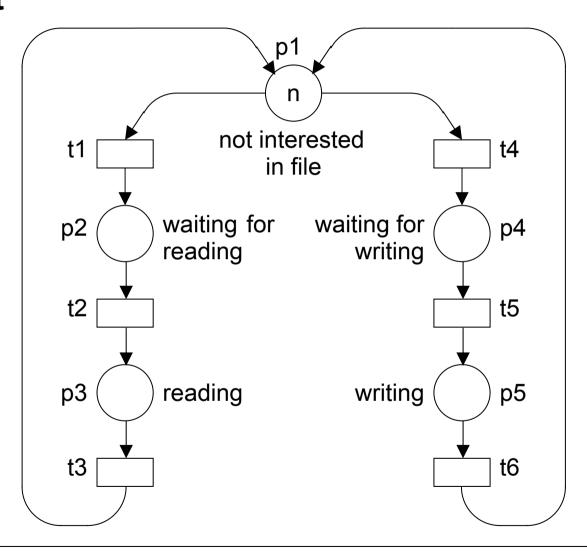
as one P- invariant, hence (no surprise):

$$\forall M \in Reach(S_u): M(p_1) + M(p_2) = M_0(p_1) + M_0(p_2) = 1$$

A nice application of linear analysis: readers-writers problem

- n processes may access a file for reading or writing.
- They want to coordinate their accesses such that
 - several processes may read at the same time;
 - while one process writes, no-one else may have access.
- → Problem as PT-system shown in **black** (parameterized scheme, for any *n*)

Problem net



Bernd Baumgarten Page 27

A readers-writers problem & solution

- *n* processes may access a file for reading or writing.
- They want to coordinate their accesses such that
 - several processes may read at the same time;
 - while one process writes, no-one else may have access.
- → Problem as PT-system shown in **black** (parameterized scheme, for any *n*)

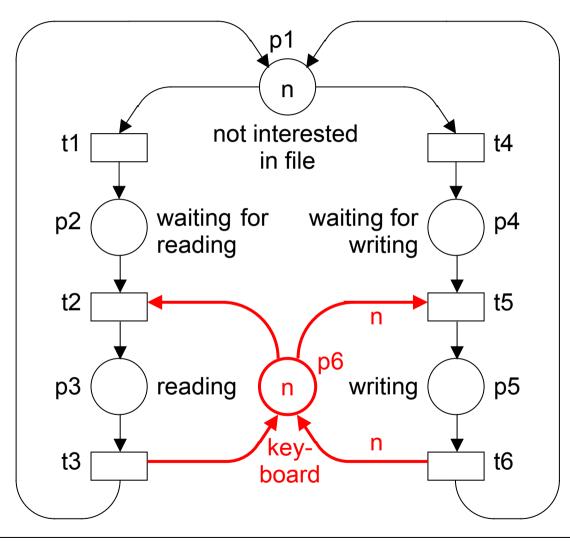
Solution idea: *n*-keys algorithm

A keyboard holds *n* keys.

A <u>reader</u> takes <u>1</u> key before reading and returns it afterwards.

A <u>writer</u> needs <u>n</u> keys.

Solution net



Bernd Baumgarten Page 29

Correctness: Linear analysis plus ...

Incidence matrix:

$$C = \begin{pmatrix} -1 & 0 & 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & -1 & 0 & -n & n \end{pmatrix}$$

Two P-invariants:

$$\mathbf{C} = \begin{pmatrix} -1 & 0 & 1 & -1 & 0 & 1 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 1 & -1 & 0 & -n & n \end{pmatrix} \qquad \mathbf{C}^{\mathsf{T}} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad \mathbf{C}^{\mathsf{T}} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ n \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

First:

No transition changes the total number of processes.

Second:

#(readers) + n•#(writers) + #(free keys) = n

The second P-invariant implies correctness! (why?)

Petri-Nets for concurrency

It is hard to really observe concurrency.

It is possible to observe effects of causality (often → non-simultaneity).

It is possible to obtain local timed observation sequences (often → **potential** simultaneity)

Relativity -> There is no **absolute** simultaneity of time-point events!

not at the same time!

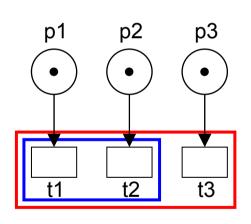
Tricky concurrency semantics?
Applications??

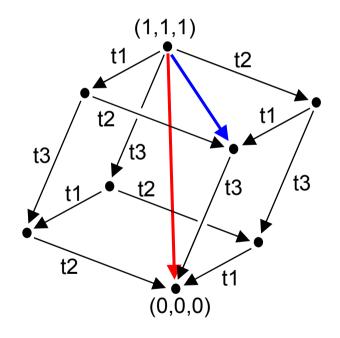
Therefore: I prefer to consider events as concurrent which

- are not mutually exclusive (e.g. because they use a resource place, tool, permission that exists only once) and
- can be observed to happen in any order, arbitrarily closely together.

Concurrency in the reachability graph ...

- does not produce new system states (markings);
- produces new arcs
 which are diagonals of
 n-dimensional cubes (n=2, 3, 4, ...)
 in the reachability graph:





Some Literature

- B. Baumgarten: *Petri-Netze, Grundlagen und Anwendungen* (2nd ed.), Spektrum Akademischer Verlag, 1996
- M. Diaz: Les réseaux de Petri, Modèles fondamenteaux, Hermes Science, 2001
- T. Murata: Petri nets. *Proceedings IEEE*, 77/14, 541-579, 1989
- Wolfgang Reisig: *Petri Nets, An Introduction*. EATCS Monographs on Theoretical Computer Science, Springer, 1985
- P.H Starke: Analyse von Petri-Netz-Modellen, Teubner, 1990
- → Petri Nets World website http://www.informatik.uni-hamburg.de/TGI/PetriNets/