
PhD Summer School
Formal Methods for System Analysis in Informatics

Druskininkai, LT, May 2007

Petri Nets
with Timing Notions

Bernd Baumgarten

 Fraunhofer SIT

Rheinstr. 75, 64295 Darmstadt, Germany
bernd.baumgarten@sit.fraunhofer.de
http://private.sit.fhg.de/~baumgart/
+49 6151 869263

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 2

Purpose and realization of timing

Ultimate purpose:

system specification timed observation sequences

Technical approach – Timer nets:

Specify temporal conditions
for the occurences of transitions

in place-transition systems

It could be done with HLPNs
instead, but let’s stay simple!

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 3

Timing relationships

Set upper and lower time limits

for the occurrence of a transition

with respect to

• prior occurrences of other transitions,
• prior occurrences of the same transition,
• absolute time (in the physical world),
• time differences of the above.

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 4

Transition types

Analysis of examples 3 kinds of transitions needed

• MAY-transitions

• MUST-transitions

• ASAP-transitions

We illustrate the transition types and timing relationships
in parallel by means of intuitively understandable examples.

!

!!

Occurrences do
not consume time!
Time passes
chiefly (?!)
between firings.

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 5

Timer net example: Delivery Deadline
… introduces

• timing relative to earlier occurrence moments of other transitions
• MAY transitions

Delivery deadline
Informally: order may happen once, at any time.

delivery may only occur ≤5 time units after order, else not at all:
“Deliver in time, or forget it.”

Notation: T_ord = time shown by timer (clock) T_ord, a real number.
 (T_ord:=0) = a clock-setting (timer start).
 [] encloses timing conditions.
Similarly: opening hours, legal deadlines, …

order
(T_ord := 0)

delivery
[T_ord ≤ 5]

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 6

Timer net example: Hall Clock
… introduces

• timing relative to the last occurrence moment of the same transition
• our first MUST transition

Hall clock

Informally: It ticks every time unit, initially 1 time unit after start.
Notation: ! tick is a mandatory, a MUST transition;
 it is guaranteed to fire within its time limits
 (unless disabled at the end).
Reminder: Promises without time limits are void.

start
(T_passed:= 0)

!

tick
[T_passed = 1]
(T_passed:= 0)

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 7

Timer net example: Fireworks
… introduces

• timing relative to real world time

New year’s fireworks

Informally: A big firework shall start at midnight, 1.1. 2008.
Notation: T_abs = real world time, e.g. as GMT.

startFireworks
[T_abs=1.1.2008,0:00h]!

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 8

Timer net example: Dinner’s ready
… introduces
• our first ASAP transition (As Soon As Possible)

Dinner’s ready
Informally: Eat as soon as in possession in knife and fork.
Notation: !! The transition is immediate or ASAP:
 eat must fire as soon as enabled w.r.t. tokens and time
 (unless disabled right then, or time condition not true).

getKnife

getFork

eat !!

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 9

• the use of timer differences
Timer net example: Primogeniture
… introduces

Informal description: The first-born son of King Heinrich I (“the Bird-Catcher”) was
the first candidate upon the throne after the King’s death. Thus Prince Otto became King
Otto and later Emperor Otto the Great, while Prince Heinrich did not become king,
quarrelled with Otto and was later named Heinrich “the Quarrelsome”.

*Heinrich
 (tH := 0)

*Otto
 (tO := 0)

† Heinrich I.

Heinrich
 (tH–tO > 0)

Otto
 (tO–tH > 0)

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 10

MAY + MUST + ASAP – a comprehensive example

start

[8:00≤x1<22:00]

enter

leave

[x1=24:00]

incident fire outahere

(x1:=0)

shopOK

!!

!

!!

 cust
outside

[x1≤22:00]

!!

cust
inside

end

1st day
 0:00

world time x0=0 ~
opening day, 0:00

midnight

(x1:=0) „Mall shop“ (valid customer behaviour)

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 11

Time value range TT

Instead of RI , it might be desirable to use e.g.

• a dense unbounded set TT of non-negative numbers, including 0,

where timer differences may, of course, be negative.
Thus, between any two numbers a<b in the set there exists
another one, a<y<b – and hence infinitely many.

Theoreticians prefer the reals 0≥RI ,
or the rationals ,0/ ≥Q
while the practically most widely used range is 0≥DI , the natural
multiples of the integer powers of 10, i.e. the terminating decimals.

• the natural numbers 0NI (or integers ZZ , for differences).

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 12

Timer Nets - formally
A timer Petri net is an 9-tuple),,,,,,,,(0 ReStCXTypeMWFTPN = , where

•),,,,(0MWFTPN = is a PT-system,

• Type is a mapping from T to {MAY, MUST, ASAP},

• },,,{ 10 rxxxX K= is a non-empty set of timer names,

• C is a mapping from T to the set)(XΦ of timing conditions, i.e. the
language defined by
o tctccRxxcRxtruetc iii ∧−= |)(|| ,
o >≥=≤<= ||||R ,
o Xxi∈ ,
o TTc ∈ .

• ReSt is a mapping T P(X \ }{ 0x), associating to each transition its
 restart set (set of restated clocks).

Exception: ASAP dense time
slot never open below.

!! [x0>0] !

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 13

The dynamic behaviour of Timer nets
System start

The system starts to run

• at a physical time 00 =x ;

Outside of the net, a real world moment must be associated with 00 =x .

• at the same moment, all (virtual) clocks in X begin to run,
 starting with a value of 0.
 Now, all clocks run at the same speed, 1=ix& .

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 14

The dynamic behaviour of Timer nets
Transition activation and occurrence

In order to be temporally activated (not only token-wise), a transition

 (1) must be token-enabled in the conventional sense,
i.e. by the presence of sufficiently many tokens on its input places, and

 (2) its time condition must be fulfilled (evaluate to TRUE)
with the clock readings given at this moment.

An activated transition can occur,

 (1) changing the marking as in a PT-system,
 (2) restarting all clocks in ReSt(t) with value 0,
 (3) and doing all this without consuming time.

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 15

The dynamic behaviour of Timer nets
Passage of time
Time can pass arbitrarily,

• before the first transition occurrence,
• between transition occurrences, and
• after the last transition occurrence,

but ...

Time “cannot pass” if a transition must occur, i.e.

• an activated MUST-transition has reached its deadline, or
• an ASAP transition is activated.

In this case, one of any such transitions must occur right away,
and so on,

as long as there are any left.

 cf. the
“temporal vs. causal

paradoxon” of deadlines:
if I don’t fulfill my task by

the promised deadline,
the world will come to a

grinding halt!

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 16

The dynamic behaviour of Timer nets
Timed observations

The resulting timed occurrence sequences can be written as

(t1,v1) (t2,v2) . . . (tn,vn) (end,vn+1), where
• vi are clock-readings of x0, vi+1 ≥ vi , and
• no transition occurs between x0 = 0 and v1 as well as between x0 = vn and

vn+1.

Why the final passage of time?

To characterize the violation of deadlines!
Non-timed models make it hard to deal with inactivity.

Exercise: Write timed traces of the previous examples and of the “Mall shop“!

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 17

Timing condition FAQ’s

When are two timing conditions equivalent?
When is a timing condition contradictory (unfulfillable)?

Tools: simplified linear optimisation
Lucky correspondences due to the special form
 of the timing conditions!

Systems of inequalities

Matrices Graphs

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 18

System of inequalities matrix

Let tc be a timing condition for },,{ 1 nxxX K= .
1. Transform to: mlbxxa lm >≤−≤ , axxb ml −≤−≤−
2. Add conds.: 00 ≤−≤ kk xx (nk ≤≤1), ∞≤−≤∞− ki xx (nki ≤≤ ,1).
 Maximum of all lower bounds kx
 Minimum of all upper bounds ki xx − , nik ≤≤≤1

4. Interval form:
ikkiki

kkk
DxxDnik
DxDnk

≤−≤−≤≤≤∀
≤≤−≤≤∀

:1
:1 00

or ... with 00 ≡x
 Upper bound form,: ikki Dxxnik ≤−≤≤∀ :,1
or ...
5. Difference Bound Matrix, DBM, for tc

nkiDtcD ik ...,,0,)()(==

3. Form of

Normal-
form(s)

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 19

From the matrix to the cost graph

Schema:

omissible as default: and

Example:

11 ≤x
62 ≤x

72 3 ≤≤ x
313 ≤− xx
412 ≤− xx
322 xx −≤

000 ≤− xx
∞≤− 10 xx

M
313 ≤− xx
223 −≤− xx

033 ≤− xx

k i
Dik

k i ∞ k 0

0
1

1

2 3
-2

-2 7
6 3

4

ki xx −



















−
∞
∞∞
−∞∞

0237
046

01
20

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 20

Canonical representations of timing conditions
Some inequalities imply others:)5()1()4(2112 ≤⇒≤∧≤− xxxx

 In timing condition: sharpened inequalities
(still same solution space!)

 in DBM: 102120 DDD +≤
 in graphs: „cheaper“ paths.

sharpest inequalities in tc
 jkijik DDDnkji +≤≤≤∀ :,,0 in D(tc)

 minimal cost graph: G(tc)

21, tctc solution equivalent))(())((21 tcDKtcDK =⇔

timer condition tc ist fulfillable))((1tcDK⇔ does not contain ∞−
)(tcG⇔ does not contain „winning cycle“

„canonical“ „K(...)“

0
1

1

23
-2

-2 7
6 3

4
5

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 21

Floyd-Warshall-Algorithm
computes

minimal cost graph for a
given digraph with
real valued edge “costs”

hence also a
canonical DBM and a
canonical normal form of a

timing condition.

In our example:

FOR j:=1,…,n
 FOR i:=1,…,n
 FOR k:=1,…,n

),min(:)1()1()1()(−−− += j
jk

j
ij

j
ik

j
ik DDDD

0
1

1

23
-2

-2 7
6 3

4

1
1

23
-2

-2 3 5 -34

0
-1

0
2

-4
3

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 22

Reminder: untimed acceptors
Aim:
simple data object allowing to decide in a simple manner whether an observation
sequence is valid for the specification (supports conformance).

Reachability graph of the ST-system
Nodes: reachable markings, at least 0M .
Edges: tM[(Markg. M, Trans. t, Markg. Mt)
is an acceptor for the occurrence language

Canonical acceptor of occurrence language)(NOcc
Nodes: reachable quotient lang’s, initially)(NOcc
Edges: (language L, Transition t, quotient)(1 Lt −)

t*

t s

0 1 2
tt

t* t

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 23

“Acceptors” for timed observation sequences (1)

1st method Timer net itself

 recipe: replay the sequence to be investigated
 clumsy: token game + checking timing conditions
 problematic: non-deterministic if labelled net

 (which copy with this name fired?)

2nd method Timed reachability graph
 nodes: marking + time x0
 edges: timed occurrence/ passage of time
+ no more token game
– usually infinite graph

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 24

“Acceptors” for timed observation sequences (2)

3rd method Time region graph

 nodes: marking + clock region
 (knowledge about the possible clock values)
 edges: transition (timer condition timer starts)
+ no more token game
+ temporally excluded markings are dropped
 reduces numer of nodes
– acceptance check still with timing check
– some markings appear multiply with various clock zones
 boosts number of nodes

a timed automaton a timing
condition

compute using
Floyd-Warshall

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 25

Time region graph, a partial example – UNTIMED NET

PT system

Reachability graph

p1 p2 p3

p5p4

t1 t2

t3 t5t4 t6

t1
t5 t6

t1

t5 t6

t3

t3
t4

t5 t6

t4

t2
(0,0,0,0,0)

(0,0,0,1,1)

(0,1,1,0,0)

(0,1,0,0,1) (1,0,0,0,1)

(1,0,1,0,0) (0,0,1,1,0)

t4

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 26

… turned into a Timer net

 “time region graph light”
(“obsolete” timers omitted)

• has 8 nodes,

• containing only 5 different markings.
M0,C0 M1,C1 M2,C2 M3,C3 M4,C4 M5,C5 M2,C6 M3,C7

 M5,C9 M4,C8
4 markings appear with 2 clock infos each. makes graph bigger
3 markings can’t be reached, 1 transition can’ fire. makes graph smaller
In the beginning the clocks gradually
“fall into a common rhythm”,
then zones repeat after 4 time units
– except the real world clock of course.

t0, t1, t3, t4, t5: MUST
t2: MAY
Timers: (x0,) x1,x3,x4,x5
Timer conditions: t4: [x4=1] (x4:=0)
t1: [x1=1] t5: [x5=3] (x5:=0)
t3: [x3=3] (x3:=0) t6: [x6=1] (x6:=0)

cyclic behaviour

exercise: determine C1 etc.

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 27

Zenon effects
A timed system specification Spec
(from a class C of such specifications)
has the Zenon property if it allows an
infinite observation sequence within a bounded time interval.

Zenon paradoxon (one of several of his):

Typical questions:

• is Zenon pr. possible within C, or is C non-Zenon?
• is this decidable for C, and, if yes, how, and how complex?

t

s

Achilles

turtle

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 28

Weaker precursors of Timer nets (1)

Time Nets (Merlin, Farber 1976) – Waiting time nets
6-tuple),,,,,(0 LEMFTP , where),,,(0MFTP ST-system and

0: NITE → earliest firing time of transition
}{: 0 ∞∪→ NITL latest firing time of transition

E = uninterruptedly token-activated waiting time

Preemption:
deactivation by a transition tu ≠ , while waiting, is possible.

L = like deadline for MUST transitions
Start: Initial marking, and “system clock” starts at 0.
natural semantics: sequences (transition,moment of firing) (...) (...) . . .

Probably

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 29

Weaker precursors of Timer nets (2)

Timed Nets (Ramchandani 1974) – Reaction time nets
5-tuple),,,,(0 DMFTP , where),,,(0MFTP ST-system and

0: ≥→ RITD Firing duration of transition

Firing mechanics:
Once token-activated (and winner of possible “token competition”) …

Start: Input tokens are collected busy-state
After D(t) time units:

End: Output tokens are dispensed idle-state
[dialects with or w/o self concurrency]
natural semantics? similar, but

Do we observe firing starts, ends, or both?

Probably

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 30

A widely known contemporary of Timer nets

Timed Automata (Alur, Dill 1990-1994)
6-tuple),,,,,(0 EIXLLA Σ= , wherei

• L finite set of locations;
• LL ⊆0 initial locations;
• Σ finite set of labels;
• X finite set of clocks;
•)(: XLI Φ→ “invariants”;
• LXXLE ××Φ×Σ×⊆)()(P transitions (firings).

Time passes while the timed automaton is in a location.

timing
conditions

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 31

Stronger successors of Timer nets

AN-Timed nets (Abdullah, Nylén, 2001. Cf. Lautenbach et al.: Timestamp nets, 1998)

• Each token has an age which represented by a real-valued clock
A marking is thus a multiset of real numbers (the ages of the tokens) on
each place. These ages/numbers grow at the same speed.

• Input arcs of transitions are labelled by timing conditions (intervals) fixing
the accepted ages of the eligible incoming tokens.
Tokens of a rejected age are neglected.
Activation is as usual but refers only to eligible tokens.

• All transitions are MAY (in Timer net terms): they do not have to fire ASAP,
they can even let their activation expire (not MUST).

• Tokens produced start with their clock at 0.
Increased expressivity due to unlimited number of clocks?

Probably

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 32

Expressivity – a neglected topic
Many classes C of specifications
(e.g. timer nets, time nets, timed nets, AN-timed nets, timed automata)
define a class Languages(C) of timed observation languages.

C1 is more expressive than C2 if

Languages(C1) ⊇ Languages(C2),
and strictly more expressive, if they are additionally not equal.
My Question:

Some expressivity
comparisons have
been claimed in

literature – usually
not proven
properly!

How are the classes presented above
related w.r.t. their expressivity?

(or perhaps only after slight modifications?)

Druskininkai PhD Summer School May 18, 2007

Bernd Baumgarten Page 33

Literature
Abdulla, P.A., and A.Nylén, Timed Petri Nets and BQOs, Intl. Conf. on
Application and Theory of Petri Nets 2001, LNCS vol. 2075, pp. 53-70,
Springer, 2001
R. Alur, D.L. Dill: A theory of timed automata, Theoretical Computer Science,
126:183--235, 1994.
Baumgarten, B., Petri-Netze – Grundlagen und Anwendungen, BI Wissen-
schaftsverlag, Mannheim, 1st ed., 1990 (first mentioning of Timer nets)
P. Merlin, D.J. Farber: Recoverability of communication protocols, IEEE
Trans. on Communications, 24(9), pp. 1036-1043,1976
C. Ramchandani: Analysis of asynchronous concurrent systems by timed
Petri nets, Technical Report MAC-TR-120, MIT, 1974
J. Wang: Timed Petri Nets – Theory and Application, Kluwer Academic
Publishers, 1998

