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Purpose and realization of timing 
   
Ultimate purpose: 
 

system specification  timed observation sequences 
    
Technical approach – Timer nets: 
 

Specify temporal conditions 
for the occurences of transitions 

in place-transition systems   

It could be done with HLPNs 
instead, but let’s stay simple! 
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Timing relationships 
 

 
Set upper and lower time limits 

for the occurrence of a transition 

with respect to 
  

• prior occurrences of other transitions, 
• prior occurrences of the same transition, 
• absolute time (in the physical world), 
• time differences of the above. 
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Transition types 
 
Analysis of examples      3 kinds of transitions needed     
 

• MAY-transitions 
  

• MUST-transitions 
  

• ASAP-transitions 
     

 
We illustrate the transition types  and timing relationships  
in parallel by means of intuitively understandable examples. 

 

! 

!! 

Occurrences do 
not consume time! 
Time passes 
chiefly (?!) 
between firings. 
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Timer net example: Delivery Deadline 
… introduces 

• timing relative to earlier occurrence moments of other transitions 
• MAY transitions 

 
 
 

Delivery deadline 
Informally: order may happen once, at any time. 

delivery may only occur ≤5 time units after order, else not at all: 
“Deliver in time, or forget it.”  

Notation: T_ord = time shown by timer (clock) T_ord, a real number. 
 (T_ord:=0) = a clock-setting (timer start). 
 [ ]  encloses timing conditions.  
Similarly: opening hours, legal deadlines, … 

order 
(T_ord := 0)

delivery 
[T_ord ≤ 5] 
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Timer net example: Hall Clock 
… introduces 

• timing relative to the last occurrence moment of the same transition 
• our first MUST transition 

   
 
 
 

 
Hall clock 

Informally: It ticks every time unit, initially 1 time unit after start.  
Notation: ! tick is a mandatory, a MUST transition; 
  it is guaranteed to fire within its time limits 
  (unless disabled at the end).   
Reminder:  Promises without time limits are void.   

start
(T_passed:= 0)

!

tick
[T_passed  = 1] 
(T_passed:= 0)
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Timer net example: Fireworks 
… introduces 
 
• timing relative to real world time   

 

New year’s fireworks 
 
Informally: A big firework shall start at midnight, 1.1. 2008.  
Notation: T_abs = real world time,  e.g. as  GMT. 
 

startFireworks
[T_abs=1.1.2008,0:00h]!



Druskininkai PhD Summer School  May 18, 2007  

Bernd Baumgarten  Page 8  

 

Timer net example: Dinner’s ready 
… introduces  
• our first ASAP transition (As Soon As Possible)   

 

Dinner’s ready 
Informally: Eat as soon as in possession in knife and fork.  
Notation: !! The transition is immediate or ASAP: 
  eat must fire as soon as enabled w.r.t. tokens and time 
  (unless disabled right then, or time condition not true). 

getKnife 

getFork 

eat !!
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• the use of timer differences 
Timer net example: Primogeniture 
… introduces    

 

    
Informal description:         The first-born son of King Heinrich I (“the Bird-Catcher”) was 
the first candidate upon the throne after the King’s death. Thus Prince Otto became King 
Otto and later Emperor Otto the Great, while Prince Heinrich did not become king, 
quarrelled with Otto and was later named Heinrich “the Quarrelsome”. 

 

*Heinrich
 (tH := 0) 

*Otto
 (tO := 0) 

† Heinrich I.

Heinrich           
 (tH–tO > 0) 

Otto           
 (tO–tH > 0) 
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MAY + MUST + ASAP  – a comprehensive example 
 

 
   

 

start

[8:00≤x1<22:00]

enter

leave

[x1=24:00] 

incident fire outahere

(x1:=0)

shopOK

!! 

! 

!! 

 cust
outside 

[x1≤22:00]

!! 

cust
inside

end

1st day
  0:00 

world time x0=0 ~ 
opening day,  0:00 

midnight 

(x1:=0) „Mall shop“ (valid customer behaviour) 
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Time value range TT  
  
Instead of RI , it might be desirable to use e.g. 
  
• a dense unbounded set TT  of non-negative numbers, including 0,         

where timer differences may, of course, be negative. 
Thus, between any two numbers a<b in the set there exists     
another one, a<y<b   – and hence infinitely many. 

Theoreticians prefer the reals  0≥RI , 
or the rationals ,0/ ≥Q  
while the practically most widely used range is 0≥DI , the natural 
multiples of the integer powers of 10, i.e. the terminating decimals. 

  
• the natural numbers 0NI  (or integers ZZ , for differences).  
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Timer Nets - formally 
A timer Petri net is an 9-tuple ),,,,,,,,( 0 ReStCXTypeMWFTPN = , where  

• ),,,,( 0MWFTPN =  is a PT-system, 

• Type is a mapping from T to {MAY, MUST, ASAP}, 

• },,,{ 10 rxxxX K=  is a non-empty set of timer names, 

• C is a mapping from T to the set )(XΦ  of timing conditions, i.e. the 
language defined by 
o tctccRxxcRxtruetc iii ∧−= |)(|| ,  
o >≥=≤<= ||||R , 
o Xxi∈ , 
o TTc ∈ .  

• ReSt is a mapping T  P(X \ }{ 0x ), associating to each transition its 
 restart set (set of restated clocks). 

Exception: ASAP dense time 
slot never open below.  

!! [x0>0]      ! 
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The dynamic behaviour of Timer nets 
System start 
 
 
The system starts to run 
 
• at a physical time 00 =x ; 

Outside of the net, a real world moment must be associated with 00 =x . 
 

• at the same moment, all (virtual) clocks in X begin to run, 
 starting with a value of 0. 
 Now, all clocks run at the same speed, 1=ix& . 
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The dynamic behaviour of Timer nets 
Transition activation and occurrence 
   
In order to be temporally activated (not only token-wise), a transition  

 (1) must be token-enabled in the conventional sense, 
i.e. by the presence of sufficiently many tokens on its input places, and  

 (2) its time condition must be fulfilled (evaluate to TRUE) 
with the clock readings given at this moment. 

   
An activated transition can occur,  

 (1) changing the marking as in a PT-system,  
 (2) restarting all clocks in ReSt(t) with value 0,  
 (3) and doing all this without consuming time. 



Druskininkai PhD Summer School  May 18, 2007  

Bernd Baumgarten  Page 15  

 

The dynamic behaviour of Timer nets 
Passage of time 
Time can pass arbitrarily, 

• before the first transition occurrence, 
• between transition occurrences, and 
• after the last transition occurrence, 

but ...  
  
Time “cannot pass” if a transition must occur, i.e. 

• an activated MUST-transition has reached its deadline, or 
• an ASAP transition is activated. 

In this case, one of any such transitions must occur right away, 
and so on, 

as long as there are any left. 

 cf. the 
“temporal vs. causal 

paradoxon” of deadlines: 
if I don’t fulfill my task by 

the promised deadline, 
the world will come to a 

grinding halt! 
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The dynamic behaviour of Timer nets 
Timed observations 
  
The resulting timed occurrence sequences can be written as 

(t1,v1) (t2,v2) . . . (tn,vn) (end,vn+1),   where 
• vi are clock-readings of x0, vi+1 ≥  vi , and 
• no transition occurs between x0 = 0 and v1 as well as between x0 = vn and 

vn+1. 
 
Why the final passage of time? 

To characterize the violation of deadlines! 
Non-timed models make it hard to deal with inactivity. 

  
Exercise: Write timed traces of the previous examples and of the “Mall shop“! 
 



Druskininkai PhD Summer School  May 18, 2007  

Bernd Baumgarten  Page 17  

 

Timing condition FAQ’s 
  

When are two timing conditions equivalent?  
When is a timing condition contradictory (unfulfillable)? 

 
Tools: simplified linear optimisation    
Lucky correspondences due to the special form 
 of the timing conditions! 
  

Systems of inequalities 
   
 
 

Matrices Graphs 
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System of inequalities  matrix 
  
Let tc be a timing condition for },,{ 1 nxxX K= .    
1. Transform to:  mlbxxa lm >≤−≤ ,     axxb ml −≤−≤−    
2. Add conds.:  00 ≤−≤ kk xx  ( nk ≤≤1 ), ∞≤−≤∞− ki xx   ( nki ≤≤ ,1 ).  
  Maximum of all lower bounds kx    
  Minimum of all upper bounds ki xx −  , nik ≤≤≤1    

4.  Interval form: 
ikkiki

kkk
DxxDnik
DxDnk

≤−≤−≤≤≤∀
≤≤−≤≤∀

:1
:1 00  

or ... with    00 ≡x  
  Upper bound form,: ikki Dxxnik ≤−≤≤∀ :,1   
or ...  
5.   Difference Bound Matrix, DBM, for tc 

nkiDtcD ik ...,,0,)()( ==  

3. Form  of 

Normal-
form(s) 
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From the matrix to the cost graph  

Schema:  
 
 
omissible as default:         and  
  
Example:   

11 ≤x  
62 ≤x  

72 3 ≤≤ x  
313 ≤− xx  
412 ≤− xx  
322 xx −≤  

000 ≤− xx  
∞≤− 10 xx  

M 
313 ≤− xx  
223 −≤− xx  

033 ≤− xx  

 

 
 

 

k i 
Dik

k i ∞ k 0 

0
1

1 

2 3
-2

-2 7
6 3 

4 

ki xx −



















−
∞
∞∞
−∞∞

0237
046

01
20
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Canonical representations of timing conditions 
Some inequalities imply others: )5()1()4( 2112 ≤⇒≤∧≤− xxxx   

  In timing condition: sharpened inequalities 
(still same solution space!)  

 in DBM:   102120 DDD +≤    
 in graphs:    „cheaper“ paths.   

sharpest inequalities    in tc   
 jkijik DDDnkji +≤≤≤∀ :,,0  in D(tc) 

  
 minimal cost graph:   G(tc)   

21, tctc  solution equivalent ))(())(( 21 tcDKtcDK =⇔  
 
timer condition tc  ist fulfillable ))(( 1tcDK⇔  does not contain ∞−  
 )(tcG⇔  does not contain „winning cycle“ 

„canonical“ „K(...)“ 

0
1

1

23
-2

-2 7
6 3

4 
5
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Floyd-Warshall-Algorithm 
computes       

minimal cost graph for a 
given digraph with 
real valued edge “costs”  

hence also a 
canonical DBM and a  
canonical normal form of a 

timing condition.  
   
 
In our example: 
 
 

FOR j:=1,…,n 
  FOR i:=1,…,n 
    FOR k:=1,…,n 

      ),min(: )1()1()1()( −−− += j
jk

j
ij

j
ik

j
ik DDDD  

0
1

1

23
-2

-2 7
6 3

4

1
1

23
-2

-2 3 5 -34

0
-1

0
2

-4
3
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Reminder: untimed acceptors 
Aim:  
simple data object allowing to decide in a simple manner whether an observation 
sequence is valid for the specification (supports conformance).  

Reachability graph of the ST-system 
Nodes: reachable markings, at least 0M . 
Edges: tM[   (Markg. M, Trans. t, Markg. Mt) 
is an acceptor for the occurrence language  

 
 
 
 
 

Canonical acceptor of occurrence language )(NOcc  
Nodes: reachable quotient lang’s, initially )(NOcc  
Edges: (language L, Transition t, quotient )(1 Lt − ) 

t* 

t s 

0 1 2
tt

t* t 



   
Druskininkai PhD Summer School  May 18, 2007 
 

Bernd Baumgarten  Page 23  

 

“Acceptors” for timed observation sequences (1) 
 
1st method Timer net itself 

 recipe: replay the sequence to be investigated 
 clumsy: token game + checking timing conditions 
 problematic: non-deterministic if labelled net 

 (which copy with this name fired?) 
    

 

2nd method Timed reachability graph 
 nodes: marking + time x0 
 edges: timed occurrence/ passage of time 
+ no more token game 
– usually infinite graph  
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“Acceptors” for timed observation sequences (2) 
  
 
 
3rd method  Time region graph  

 nodes: marking + clock region 
   (knowledge about the possible clock values) 
 edges: transition (  timer condition  timer starts) 
+ no more token game 
+ temporally excluded markings are dropped 
   reduces numer of nodes 
– acceptance check still with timing check 
– some markings appear multiply with various clock zones 
   boosts number of nodes 

 

a timed automaton a timing 
condition 

compute using 
Floyd-Warshall 
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Time region graph, a partial example – UNTIMED NET 
 
PT system 
 
 
 
 
 
Reachability graph 
 

p1 p2 p3

p5p4 

t1 t2

t3 t5t4 t6

t1 
t5 t6

t1 

t5 t6

t3

t3
t4

t5 t6

t4

t2
(0,0,0,0,0) 

(0,0,0,1,1) 

(0,1,1,0,0) 

(0,1,0,0,1) (1,0,0,0,1) 

(1,0,1,0,0) (0,0,1,1,0) 

t4
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… turned into a Timer net 
  
 “time region graph light” 
(“obsolete” timers omitted) 

• has 8 nodes,  

• containing only 5 different markings. 
M0,C0  M1,C1  M2,C2  M3,C3  M4,C4  M5,C5    M2,C6  M3,C7 

    M5,C9  M4,C8 
4 markings appear with 2 clock infos each.    makes graph bigger 
3 markings can’t be reached, 1 transition can’ fire.  makes graph smaller 
In the beginning the clocks gradually 
“fall into a common rhythm”, 
then zones repeat after 4 time units 
– except the real world clock of course. 

t0, t1, t3, t4, t5: MUST 
t2:  MAY 
Timers: (x0,) x1,x3,x4,x5 
Timer conditions: t4: [x4=1] (x4:=0) 
t1: [x1=1] t5: [x5=3] (x5:=0) 
t3: [x3=3] (x3:=0) t6: [x6=1] (x6:=0) 

cyclic behaviour 

exercise: determine C1 etc. 
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Zenon effects 
A timed system specification Spec 
(from a class C of such specifications) 
has the Zenon property if it allows an 
infinite observation sequence within a bounded time interval. 
 

Zenon paradoxon (one of several of his): 
 

 
Typical questions: 

• is Zenon pr. possible within C, or is C non-Zenon? 
• is this decidable for C, and, if yes, how, and how complex? 

t 

s

Achilles 

turtle 
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Weaker precursors of Timer nets (1) 
 
Time Nets (Merlin, Farber 1976) – Waiting time nets 
6-tuple ),,,,,( 0 LEMFTP , where ),,,( 0MFTP  ST-system and 
  

0: NITE →   earliest firing time of transition  
}{: 0 ∞∪→ NITL   latest firing time of transition 

  
E = uninterruptedly token-activated waiting time  

Preemption: 
deactivation by a transition tu ≠ , while waiting, is possible.  

L = like deadline for MUST transitions  
Start:  Initial marking, and “system clock” starts at 0.  
natural semantics:  sequences (transition,moment of firing) ( ... ) ( ... ) . . . 

Probably 
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Weaker precursors of Timer nets (2) 
   
Timed Nets  (Ramchandani 1974) – Reaction time nets 
5-tuple ),,,,( 0 DMFTP , where ),,,( 0MFTP  ST-system and 

0: ≥→ RITD  Firing duration of transition  
 
Firing mechanics: 
Once token-activated (and winner of possible “token competition”) …  

Start: Input tokens are collected  busy-state  
After D(t) time units: 

End: Output tokens are dispensed  idle-state  
[dialects with or w/o self concurrency] 
natural semantics? similar, but 

Do we observe firing starts, ends, or both? 

Probably 



   
Druskininkai PhD Summer School  May 18, 2007 
 

Bernd Baumgarten  Page 30  

 

A widely known contemporary of Timer nets 
 
Timed Automata (Alur, Dill 1990-1994) 
6-tuple ),,,,,( 0 EIXLLA Σ= , wherei 
 

• L   finite set of    locations;   
• LL ⊆0         initial locations; 
• Σ    finite set of    labels; 
• X    finite set of    clocks; 
• )(: XLI Φ→   “invariants”; 
• LXXLE ××Φ×Σ×⊆ )()( P    transitions  (firings). 

 
Time passes while the timed automaton is in a location. 
 

timing 
conditions
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Stronger successors of Timer nets 
   
AN-Timed nets (Abdullah, Nylén, 2001. Cf. Lautenbach et al.: Timestamp nets, 1998) 

• Each token has an age which represented by a real-valued clock 
A marking is thus a multiset of real numbers (the ages of the tokens) on 
each place. These ages/numbers grow at the same speed. 

• Input arcs of transitions are labelled by timing conditions (intervals) fixing 
the accepted ages of the eligible incoming tokens. 
Tokens of a rejected age are neglected. 
Activation is as usual but refers only to eligible tokens. 

• All transitions are MAY (in Timer net terms): they do not have to fire ASAP, 
they can even let their activation expire (not MUST). 

• Tokens produced start with their clock at 0. 
Increased expressivity due to unlimited number of clocks? 

Probably 
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Expressivity – a neglected topic 
Many classes C of specifications 
(e.g. timer nets, time nets, timed nets, AN-timed nets, timed automata) 
define a class Languages(C) of timed observation languages. 
 
C1 is more expressive than C2 if 

Languages(C1) ⊇ Languages(C2), 
and strictly more expressive, if they are additionally not equal. 
My Question: 

Some expressivity 
comparisons have 
been claimed in 

literature – usually 
not proven 
properly! 

How are the classes presented above 
related w.r.t. their expressivity? 

(or perhaps only after slight modifications?) 
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